666 research outputs found

    Novel Methods to Incorporate Physiological Prior Knowledge into the Inverse Problem of Electrocardiography - Application to Localization of Ventricular Excitation Origins

    Get PDF
    17 Millionen Todesfälle jedes Jahr werden auf kardiovaskuläre Erkankungen zurückgeführt. Plötzlicher Herztod tritt bei ca. 25% der Patienten mit kardiovaskulären Erkrankungen auf und kann mit ventrikulärer Tachykardie in Verbindung gebracht werden. Ein wichtiger Schritt für die Behandlung von ventrikulärer Tachykardie ist die Detektion sogenannter Exit-Points, d.h. des räumlichen Ursprungs der Erregung. Da dieser Prozess sehr zeitaufwändig ist und nur von fähigen Kardiologen durchgeführt werden kann, gibt es eine Notwendigkeit für assistierende Lokalisationsmöglichkeiten, idealerweise automatisch und nichtinvasiv. Elektrokardiographische Bildgebung versucht, diesen klinischen Anforderungen zu genügen, indem die elektrische Aktivität des Herzens aus Messungen der Potentiale auf der Körperoberfläche rekonstruiert wird. Die resultierenden Informationen können verwendet werden, um den Erregungsursprung zu detektieren. Aktuelle Methoden um das inverse Problem zu lösen weisen jedoch entweder eine geringe Genauigkeit oder Robustheit auf, was ihren klinischen Nutzen einschränkt. Diese Arbeit analysiert zunächst das Vorwärtsproblem im Zusammenhang mit zwei Quellmodellen: Transmembranspannungen und extrazelluläre Potentiale. Die mathematischen Eigenschaften der Relation zwischen den Quellen des Herzens und der Körperoberflächenpotentiale werden systematisch analysiert und der Einfluss auf das inverse Problem verdeutlicht. Dieses Wissen wird anschließend zur Lösung des inversen Problems genutzt. Hierzu werden drei neue Methoden eingeführt: eine verzögerungsbasierte Regularisierung, eine Methode basierend auf einer Regression von Körperoberflächenpotentialen und eine Deep-Learning-basierte Lokalisierungsmethode. Diese drei Methoden werden in einem simulierten und zwei klinischen Setups vier etablierten Methoden gegenübergestellt und bewertet. Auf dem simulierten Datensatz und auf einem der beiden klinischen Datensätze erzielte eine der neuen Methoden bessere Ergebnisse als die konventionellen Ansätze, während Tikhonov-Regularisierung auf dem verbleibenden klinischen Datensatz die besten Ergebnisse erzielte. Potentielle Ursachen für diese Ergebnisse werden diskutiert und mit Eigenschaften des Vorwärtsproblems in Verbindung gebracht

    Electrocardiographic Imaging Using a Spatio-Temporal Basis of Body Surface Potentials - Application to Atrial Ectopic Activity

    Get PDF
    Electrocardiographic imaging (ECGI) strongly relies on a priori assumptions and additional information to overcome ill-posedness. The major challenge of obtaining good reconstructions consists in finding ways to add information that effectively restricts the solution space without violating properties of the sought solution. In this work, we attempt to address this problem by constructing a spatio-temporal basis of body surface potentials (BSP) from simulations of many focal excitations. Measured BSPs are projected onto this basis and reconstructions are expressed as linear combinations of corresponding transmembrane voltage (TMV) basis vectors. The novel method was applied to simulations of 100 atrial ectopic foci with three different conduction velocities. Three signal-to-noise ratios (SNR) and bases of six different temporal lengths were considered. Reconstruction quality was evaluated using the spatial correlation coefficient of TMVs as well as estimated local activation times (LAT). The focus localization error was assessed by computing the geodesic distance between true and reconstructed foci. Compared with an optimally parameterized Tikhonov-Greensite method, the BSP basis reconstruction increased the mean TMV correlation by up to 22, 24, and 32% for an SNR of 40, 20, and 0 dB, respectively. Mean LAT correlation could be improved by up to 5, 7, and 19% for the three SNRs. For 0 dB, the average localization error could be halved from 15.8 to 7.9 mm. For the largest basis length, the localization error was always below 34 mm. In conclusion, the new method improved reconstructions of atrial ectopic activity especially for low SNRs. Localization of ectopic foci turned out to be more robust and more accurate. Preliminary experiments indicate that the basis generalizes to some extent from the training data and may even be applied for reconstruction of non-ectopic activity

    The Impact of Standard Ablation Strategies for Atrial Fibrillation on Cardiovascular Performance in a Four-Chamber Heart Model

    Get PDF
    Purpose: Atrial fibrillation is one of the most frequent cardiac arrhythmias in the industrialized world and ablation therapy is the method of choice for many patients. However, ablation scars alter the electrophysiological activation and the mechanical behavior of the affected atria. Different ablation strategies with the aim to terminate atrial fibrillation and prevent its recurrence exist but their impact on the performance of the heart is often neglected. Methods: In this work, we present a simulation study analyzing five commonly used ablation scar patterns and their combinations in the left atrium regarding their impact on the pumping function of the heart using an electromechanical whole-heart model. We analyzed how the altered atrial activation and increased stiffness due to the ablation scars affect atrial as well as ventricular contraction and relaxation. Results: We found that systolic and diastolic function of the left atrium is impaired by ablation scars and that the reduction of atrial stroke volume of up to 11.43% depends linearly on the amount of inactivated tissue. Consequently, the end-diastolic volume of the left ventricle, and thus stroke volume, was reduced by up to 1.4 and 1.8%, respectively. During ventricular systole, left atrial pressure was increased by up to 20% due to changes in the atrial activation sequence and the stiffening of scar tissue. Conclusion: This study provides biomechanical evidence that atrial ablation has acute effects not only on atrial contraction but also on ventricular performance. Therefore, the position and extent of ablation scars is not only important for the termination of arrhythmias but is also determining long-term pumping efficiency. If confirmed in larger cohorts, these results have the potential to help tailoring ablation strategies towards minimal global cardiovascular impairment

    The impact of standard ablation strategies for atrial fibrillation on cardiovascular performance in a four-chamber heart model

    Get PDF
    Purpose: Atrial fibrillation is one of the most frequent cardiac arrhythmias in the industrialized world and ablation therapy is the method of choice for many patients. However, ablation scars alter the electrophysiological activation and the mechanical behavior of the affected atria. Different ablation strategies with the aim to terminate atrial fibrillation and prevent its recurrence exist but their impact on the hemodynamic performance of the heart has not been investigated thoroughly. Methods: In this work, we present a simulation study analyzing five commonly used ablation scar patterns and their combinations in the left atrium regarding their impact on the pumping function of the heart using an electromechanical whole-heart model. We analyzed how the altered atrial activation and increased stiffness due to the ablation scar affect atrial as well as ventricular contraction and relaxation. Results: We found that systolic and diastolic function of the left atrium is impaired by ablation scars and that the reduction of atrial stroke volume of up to 11.43% depends linearly on the amount of inactivated tissue. Consequently, the end-diastolic volume of the left ventricle, and thus stroke volume, was reduced by up to 1.4% and 1.8%, espectively. During ventricular systole, left atrial pressure was increased by up to 20% due to changes in the atrial activation sequence and the stiffening of scar tissue. Conclusion: This study provides biomechanical evidence that atrial ablation has acute effects not only on atrial contraction but also on ventricular pumping function. Our results have the potential to help tailoring ablation strategies towards minimal global hemodynamic impairment

    A Reproducible Protocol to Assess Arrhythmia Vulnerability in Silico: Pacing at the End of the Effective Refractory Period

    Get PDF
    In both clinical and computational studies, different pacing protocols are used to induce arrhythmia and non-inducibility is often considered as the endpoint of treatment. The need for a standardized methodology is urgent since the choice of the protocol used to induce arrhythmia could lead to contrasting results, e.g., in assessing atrial fibrillation (AF) vulnerabilty. Therefore, we propose a novel method—pacing at the end of the effective refractory period (PEERP)—and compare it to state-of-the-art protocols, such as phase singularity distribution (PSD) and rapid pacing (RP) in a computational study. All methods were tested by pacing from evenly distributed endocardial points at 1 cm inter-point distance in two bi-atrial geometries. Seven different atrial models were implemented: five cases without specific AF-induced remodeling but with decreasing global conduction velocity and two persistent AF cases with an increasing amount of fibrosis resembling different substrate remodeling stages. Compared with PSD and RP, PEERP induced a larger variety of arrhythmia complexity requiring, on average, only 2.7 extra-stimuli and 3 s of simulation time to initiate reentry. Moreover, PEERP and PSD were the protocols which unveiled a larger number of areas vulnerable to sustain stable long living reentries compared to RP. Finally, PEERP can foster standardization and reproducibility, since, in contrast to the other protocols, it is a parameter-free method. Furthermore, we discuss its clinical applicability. We conclude that the choice of the inducing protocol has an influence on both initiation and maintenance of AF and we propose and provide PEERP as a reproducible method to assess arrhythmia vulnerability

    A bi-atrial statistical shape model for large-scale in silico studies of human atria: model development and application to ECG simulations

    Get PDF
    Large-scale electrophysiological simulations to obtain electrocardiograms (ECG) carry the potential to produce extensive datasets for training of machine learning classifiers to, e.g., discriminate between different cardiac pathologies. The adoption of simulations for these purposes is limited due to a lack of ready-to-use models covering atrial anatomical variability. We built a bi-atrial statistical shape model (SSM) of the endocardial wall based on 47 segmented human CT and MRI datasets using Gaussian process morphable models. Generalization, specificity, and compactness metrics were evaluated. The SSM was applied to simulate atrial ECGs in 100 random volumetric instances. The first eigenmode of our SSM reflects a change of the total volume of both atria, the second the asymmetry between left vs. right atrial volume, the third a change in the prominence of the atrial appendages. The SSM is capable of generalizing well to unseen geometries and 95% of the total shape variance is covered by its first 23 eigenvectors. The P waves in the 12-lead ECG of 100 random instances showed a duration of 104ms in accordance with large cohort studies. The novel bi-atrial SSM itself as well as 100 exemplary instances with rule-based augmentation of atrial wall thickness, fiber orientation, inter-atrial bridges and tags for anatomical structures have been made publicly available. The novel, openly available bi-atrial SSM can in future be employed to generate large sets of realistic atrial geometries as a basis for in silico big data approaches

    The Impact of Standard Ablation Strategies for Atrial Fibrillation on Cardiovascular Performance in a Four-chamber Heart Model

    Get PDF
    Atrial fibrillation is one of the most frequent cardiac arrhythmias in the industrialized world and ablation therapy is the method of choice for many patients. However, ablation scars alter the electrophysiological activation and the mechanical behavior of the affected atria. Different ablation strategies with the aim to terminate atrial fibrillation and prevent its recurrence exist but their impact on the hemodynamic performance of the heart has not been investigated thoroughly. In this work, we present a simulation study analyzing five commonly used ablation scar patterns and their combinations in the left atrium regarding their impact on the pumping function of the heart using an electromechanical whole-heart model. We analyzed how the altered atrial activation and increased stiffness due to the ablation scar affect atrial as well as ventricular contraction and relaxation. We found that systolic and diastolic function of the left atrium is impaired by ablation scars and that the reduction of atrial stroke volume of up to 11.43% depends linearly on the amount of inactivated tissue. Consequently, the end-diastolic volume of the left ventricle, and thus stroke volume, was reduced by up to 1.4% and 1.8%, respectively. During ventricular systole, left atrial pressure was increased by up to 20% due to changes in the atrial activation sequence and the stiffening of scar tissue. This study provides biomechanical evidence that atrial ablation has acute effects not only on atrial contraction but also on ventricular pumping function. Our results have the potential to help tailoring ablation strategies towards minimal global hemodynamic impairment

    A Fully-Coupled Electro-Mechanical Whole-Heart Computational Model: Influence of Cardiac Contraction on the ECG

    Get PDF
    The ECG is one of the most commonly used non-invasive tools to gain insights into the electrical functioning of the heart. It has been crucial as a foundation in the creation and validation of in silico models describing the underlying electrophysiological processes. However, so far, the contraction of the heart and its influences on the ECG have mainly been overlooked in in silico models. As the heart contracts and moves, so do the electrical sources within the heart responsible for the signal on the body surface, thus potentially altering the ECG. To illuminate these aspects, we developed a human 4-chamber electro-mechanically coupled whole heart in silico model and embedded it within a torso model. Our model faithfully reproduces measured 12-lead ECG traces, circulatory characteristics, as well as physiological ventricular rotation and atrioventricular valve plane displacement. We compare our dynamic model to three non-deforming ones in terms of standard clinically used ECG leads (Einthoven and Wilson) and body surface potential maps (BSPM). The non-deforming models consider the heart at its ventricular end-diastatic, end-diastolic and end-systolic states. The standard leads show negligible differences during P-Wave and QRS-Complex, yet during T-Wave the leads closest to the heart show prominent differences in amplitude. When looking at the BSPM, there are no notable differences during the P-Wave, but effects of cardiac motion can be observed already during the QRS-Complex, increasing further during the T-Wave. We conclude that for the modeling of activation (P-Wave/QRS-Complex), the associated effort of simulating a complete electro-mechanical approach is not worth the computational cost. But when looking at ventricular repolarization (T-Wave) in standard leads as well as BSPM, there are areas where the signal can be influenced by cardiac motion of the heart to an extent that should not be ignored

    Influence of geometrical properties for the calculation of a pressure-free whole heart geometry

    Get PDF
    Individualized computer models of the geometry of the human heart are often based on magnetic resonance images (MRI) or computed tomography (CT) scans. The stress distribution in the imaged state cannot be measured but needs to be estimated from the segmented geometry, e.g. by an iterative algorithm. As the convergence of this algorithm depends on different geometrical conditions, we systematically studied their influence. Beside various shape alterations, we investigated the chamber volume, as well as the effect of material parameters. We found a marked influence of passive material parameters: increasing the model stiffness by a factor of ten halved the residual norm in the first iteration. Flat and concave areas led to a reduced robustness and convergence rate of the unloading algorithm. With this study, the geometric effects and modeling aspects governing the unloading algorithm\u27s convergence are identified and can be used as a basis for further improvement
    corecore